Sheet 1

1 Find the vector \bar{A} directed from $(2,-4,1)$ to $(0,-2,0)$ in Cartesian coordinates and find the unit vector along \bar{A}

$$
\left[\begin{array}{c}
\bar{A}=-2 \bar{a}_{x}+2 \bar{a}_{y}-\bar{a}_{z} \\
\bar{a}_{A}=\frac{-2}{3} \bar{a}_{x}+\frac{2}{3} \bar{a}_{y}-\frac{1}{3} \bar{a}_{z}
\end{array}\right]
$$

2 Show that $\bar{A}=4 \bar{a}_{x}-2 \bar{a}_{y}-\bar{a}_{z}$ and $\bar{B}=\bar{a}_{x}+4 \bar{a}_{y}-4 \bar{a}_{z} \quad$ are perpendicular

3 Determine the smaller angle between

$$
\bar{A}=2 \bar{a}_{x}+4 \bar{a}_{y} \text { and } \bar{B}=6 \bar{a}_{y}-4 \bar{a}_{z}
$$

using the cross product and also the dot product

$$
\left[\begin{array}{c}
\theta_{A B}=41.9088^{\circ} \\
\theta_{A B}=138.09^{\circ}
\end{array}\right]
$$

4 Given $\bar{F}=(y-1) \bar{a}_{x}+2 x \bar{a}_{y}$, find the vector at $(2,2,1)$ and its projection on

$$
\bar{B}=5 \bar{a}_{y}-\bar{a}_{y}+2 \bar{a}_{z}
$$

$$
\left[\begin{array}{c}
\left.\overline{\boldsymbol{F}}\right|_{(2,2,1)}=\bar{a}_{x}+4 \bar{a}_{y} \\
\text { Projection of } \bar{F} \text { onto } \bar{B}=\frac{1}{\sqrt{\mathbf{3 0}}}
\end{array}\right]
$$

5 If $\bar{A}=\bar{a}_{x}+2 \bar{a}_{y}-3 \bar{a}_{z} \quad$ and $\quad \bar{B}=2 \bar{a}_{x}-\bar{a}_{y}+\bar{a}_{z}$
Determine :
a) The magnitude of projection of \bar{B} on \bar{A}
b) The smallest angle between \bar{A} and \bar{B}
c) The vector projection \bar{A} onto \bar{B}
d) A unit vector perpendicular to the plane containing \bar{A} and \bar{B}

$$
\left[\begin{array}{c}
\text { Magnitude Projection of } \bar{B} \text { onto } \bar{A}=\frac{3}{\sqrt{\mathbf{1 4}}} \\
\boldsymbol{\theta}_{A B}=\mathbf{1 0 9 . 1 0 6 6} \\
\text { Vector Projection of } \bar{B} \text { onto } \bar{A}=-\bar{a}_{x}+\mathbf{0 . 5} \overline{\boldsymbol{a}}_{y}-\mathbf{0 . 5} \overline{\boldsymbol{a}}_{z} \\
\bar{a}_{n}= \pm \frac{\overline{\boldsymbol{a}}_{x}+7 \bar{a}_{y}+5 \overline{\boldsymbol{a}}_{z}}{\sqrt{75}}
\end{array}\right]
$$

6 Given $\bar{A}=\bar{a}_{x}+\bar{a}_{y}, \quad \bar{B}=\bar{a}_{x}+2 \bar{a}_{z} \quad, \bar{C}=2 \bar{a}_{y}+\bar{a}_{z}$
Find $(\bar{A} \times \bar{B}) \times \bar{C}$ and compare it with $\bar{A} \times(\bar{B} \times \bar{C})$, comment on the result.

$$
\left[\begin{array}{c}
(\bar{A} \times \bar{B}) \times \bar{C}=-2 \bar{a}_{y}+4 \bar{a}_{z} \\
\bar{A} \times(\bar{B} \times \bar{C})=2 \bar{a}_{x}-2 \bar{a}_{y}+3 \bar{a}_{z}
\end{array}\right]
$$

7 Find $\bar{A} \cdot \bar{B} \times \bar{C}$ for $\bar{A}, \bar{B}, \bar{C}$ of problem 6 and compare it with $\bar{A} \times \bar{B} \cdot \bar{C}$, comment on the result

$$
[\bar{A} \cdot \bar{B} \times \bar{C}=\bar{A} \times \bar{B} \cdot \bar{C}=-5]
$$

8 Express the unit vector which is directed toward the origin from an arbitrary point on the plane $z=-5$

$$
\left[\bar{a}_{R}=\frac{-x \bar{a}_{x}-y \bar{a}_{y}+5 \bar{a}_{z}}{\sqrt{x^{2}+y^{2}+25}}\right]
$$

9 Given the two vectors $\bar{A}=-\bar{a}_{x}-3 \bar{a}_{y}-4 \bar{a}_{z} \quad, \quad \bar{B}=2 \bar{a}_{x}+2 \bar{a}_{y}+2 \bar{a}_{z} \quad$ and a point $C(1,3,4)$, Find
(a) $R_{A B}$
(b) $|\bar{A}|$
(c) \bar{a}_{A}
(d) $\bar{a}_{A B}$
(e) a unit vector directed from C toward A

$$
\left[\begin{array}{c}
\bar{R}_{A B}=3 \bar{a}_{x}+5 \bar{a}_{y}+6 \bar{a}_{z} \\
\bar{A}_{A} \mid=\sqrt{26} \\
\bar{a}_{A}=\frac{-\bar{a}_{x}-3 \bar{a}_{y}-4 \bar{a}_{z}}{\sqrt{26}} \\
\bar{a}_{A B}=\frac{3 \bar{a}_{x}+5 \bar{a}_{y}+6 \bar{a}_{z}}{\sqrt{70}} \\
\bar{a}_{C A}=\frac{-\bar{a}_{x}-3 \bar{a}_{y}-4 \bar{a}_{z}}{\sqrt{26}}
\end{array}\right]
$$

10 A triangle is defined by three points $A(2,-5,1) B(-3,2,4) C(0,3,1)$ Find
a) $R_{B C} \times R_{B A}$
b) The area of the triangle
c) A unit vector perpendicular to the plane of the triangle

$$
\left[\begin{array}{c}
\bar{R}_{B C} \times \bar{R}_{B A}=-24 \bar{a}_{x}-6 \bar{a}_{y}-26 \bar{a}_{z} \\
\text { Area }=\sqrt{322}=17.94436 \text { square unit } \\
\bar{a}_{n}= \pm \frac{12 \bar{a}_{x}+3 \bar{a}_{y}+13 \bar{a}_{z}}{\sqrt{322}}
\end{array}\right]
$$

